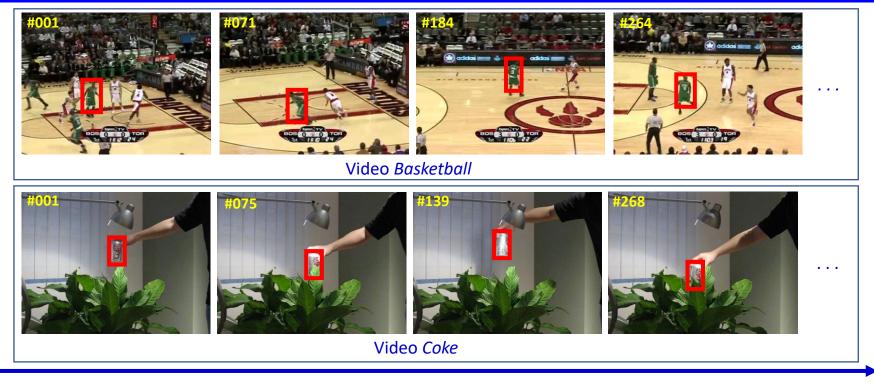
Parallel Tracking and Verifying (PTAV): A Framework for Real-Time and High Accuracy Visual Tracking

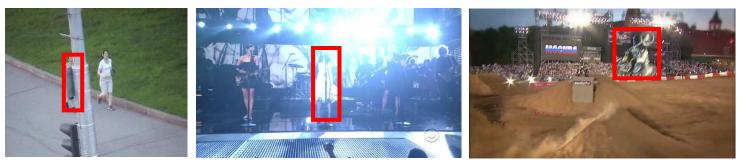

Heng Fan and Haibin Ling

Meitu HiScene Lab, HiScene Information Technologies, Shanghai, China Department of Computer and Information Sciences, Temple University, Philadelphia, PA USA

Project & Code: http://www.dabi.temple.edu/~hbling/code/PTAV/ptav.htm

ICCV, 2017

Visual Tracking


- Goal: to locate an arbitrary target in a video with its initial position.
 - Model-free: agnostic to the object's class
 - Single-object tracking
- Applications: video surveillance, robotics, human-computer interactions, etc.
 - > Accuracy
 - Efficiency: real-time requirement

3/8/2019

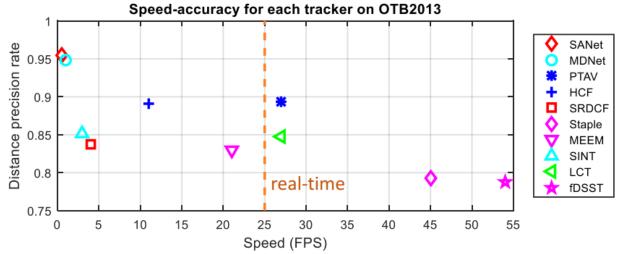
time

Challenges

• Challenge I: appearance variations

Occlusion

Rotation


Motion blur

Scale changes

Deformation & Background Clutter

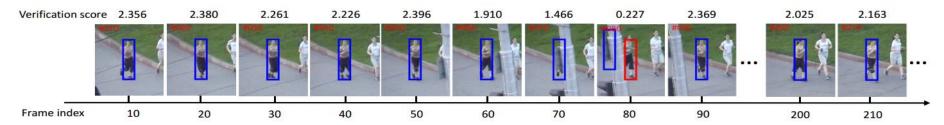
Challenge II: real-time requirement

Motivations

Speed and accuracy plot on OTB2013 (CVPR'13). For better illustration, only those trackers with accuracy higher than 0.75 are reported. The proposed PTAV algorithm achieves the best accuracy among all real-time trackers.

Existing tracking approaches

Challenges	Solution	Pros & Cons	Representatives	
Challenge I: appearance variations	robust deep features	Pros: robust to appearance variations; Cons: high computational burden;	SANet (CVPRW'17), MDNet (CVPR'16), HCF (ICCV'15), SINT (CVPR'16), etc.	
Challenge II: real-time requirement	simple hand-crafted features	Pros: efficient computation; Cons: sensitive to appearance variations;	KCF (TPAMI'15'), MOSSE (CVPR'10), fDSST (TPAMI'17), Staple (CVPR'16), etc.	

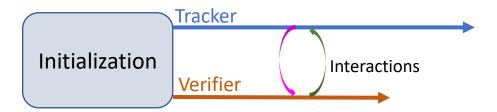

• Real-time & high quality trackers remain scarce

Trade off between accuracy and speed

3/8/2019

Motivations

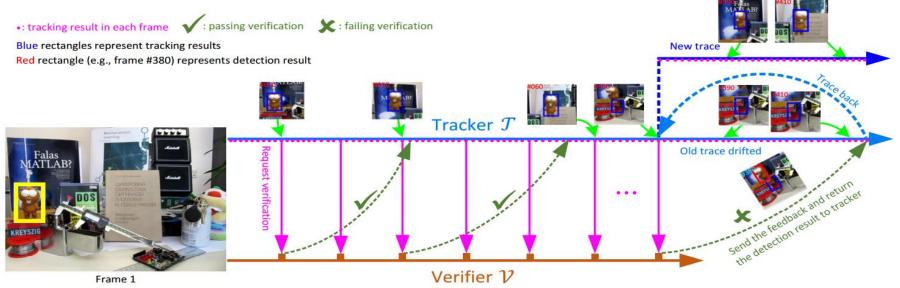
• Motivation I: smooth object appearance changes in video


Verifying tracking results on a typical sequence. Verifier validates tracking results every 10 frames. Most of the time the tracking results are reliable (showing in blue). Occasionally, *e.g.* frame #080, the verifier finds the original tracking result (showing in blue) unreliable and the tracker is corrected and resumes tracking based on detection result (showing in red).

Decompose video into alternative 'easy' and 'hard' video clips

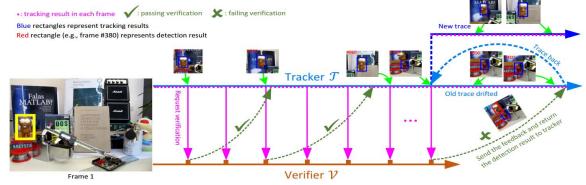
- For the 'easy' ones, simple but efficient tracker usually works fine
- For the 'hard' ones, complex operations (verifications) are required to deal with these cases
- Based on smooth assumption, the number of 'easy' cases may be larger than that of 'hard' cases
- Intuitively, verifications are only needed occasionally instead of for each frame (see the above figure)

Motivations


• Motivation II: asynchronism between tracker and verifier

Tracker and verifier run in an asynchronism mechanism

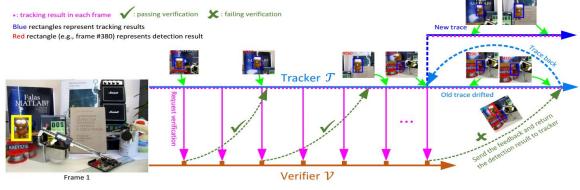
- $\succ \quad \mathsf{Tracker} \ \mathcal{T}: \mathsf{locate} \ \mathsf{object} \ \mathsf{in} \ \mathsf{each} \ \mathsf{frame}$
- \blacktriangleright Verifier \mathcal{V} : validate tracking result every T frames, and return feedback to \mathcal{T}
- \succ T and V work independently except for necessary interactions (see the above figure)
- Visual SLAM (simultaneous localization and mapping)
 - PTAM (parallel tracking and mapping) splits tracking and mapping into two parallel threads
 - In PTAM, mapping is not needed for every frame; nor does verification in our task


• Framework of PTAV

Components in PTAV

- \succ A (fast) tracker \mathcal{T}
- \succ A (reliable) verifier \mathcal{V}

• Framework of PTAV



Tasks of each component

- \succ Tracker T
 - Perform efficiently (real-time)
 - **D** Send verification request to \mathcal{V}
 - Allowed to make mistakes
 - **D** Respond to feedback from \mathcal{V} by adjusting tracking model
 - **D** Remain all intermediate status for fast rolling back
- \succ Verifier \mathcal{V}
 - Perform relatively slowly but accurately
 - **D** Receive request from \mathcal{T}
 - **D** Return feedback to \mathcal{T} , and correct it (if necessary)

Detailed working flow is shown in next slide.

• Framework of PTAV

Workflow

Al	Algorithm 1: Parallel Tracking and Verifying (PTAV) 1 Initialize the tracking thread for tracker T ;			
1 Ir				
	tun \mathcal{T} (Alg. 2) and \mathcal{V} (Alg. 3) till the end of tracking;	3	l if	
5 K	un y (rig. 2) and v (rig. 3) the the end of tracking,	- 4		
		5	e	
	corithm 3. Varifying Thread)	- 6		
	gorithm 3: Verifying Thread \mathcal{V}	_ 7		
1 W	hile not ended do	8		
2	if received request from ${\mathcal T}$ then	9	e	
3	Verifying the tracking result;	10	else	
4	if verification failed then	11	Г	
5	Provide correction information;	12	i	
6	end	13		
7	Send verification result s to \mathcal{T} ;	14	e	
8	end	15	end	
9 ei	nd	16	Curre	
	2010	- 17 e	nd	

Algorithm 2: Tracking Thread \mathcal{T}

while Current frame is valid do
if received a message s from $\mathcal V$ then
if verification passed then
Update tracking model (optional);
else
Correct tracking;
Trace back and reset current frame;
Resume tracking;
end
else
Tracking on the current frame;
if time for verification then
Send the current result to \mathcal{V} to verify;
end
end
Current frame \leftarrow next frame;
end

- Implementation of tracker \mathcal{T}
 - fDSST (TPAMI'17)
 - Tracking model

Correlation filter *h* learning by optimizing

$$\epsilon(f) = \left\| \sum_{l=1}^{d} h^{l} * f^{l} - g \right\|^{2} + \lambda \sum_{l=1}^{d} \|h^{l}\|^{2}$$
 (1)

Using FFT, the solution for (1) is derived with

$$H^{l} = \frac{GF^{l}}{\sum_{k=1}^{d} \bar{F^{k}}F^{k} + \lambda}, \quad l = 1, 2, \cdots, d \qquad (2)$$

Model update

Simple linear update for numerator A_t^l and denominator B_t^l of H_t^l

$$\begin{array}{rcl}
A_t^l &=& (1-\eta)A_{t-1}^l + \eta \bar{G}_t F_t^l \\
B_t &=& (1-\eta)B_{t-1} + \eta \sum_{k=1}^d \bar{F}_t^k F_t^k
\end{array} \tag{3}$$

Tracking

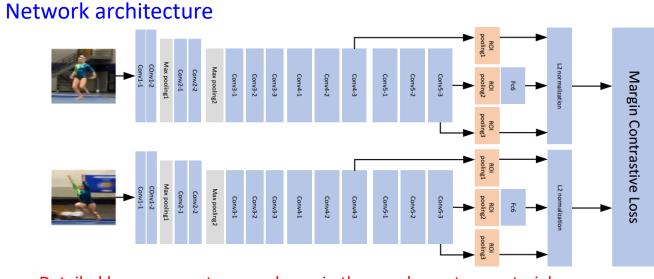
The response map y for a new image patch is computed by

$$y = \mathcal{F}^{-1} \left\{ \frac{\sum_{l=1}^{d} \bar{A}^{l} Z^{l}}{B + \lambda} \right\}$$
(4)

The location of maximal value of y is the position of target object.

PCA is used to reduce feature dimension for efficient computation, and fDSST runs around 54 fps

For fast rolling back, in PTAV, we store all intermediate status (i.e., H_t^l in (2)) of tracker.

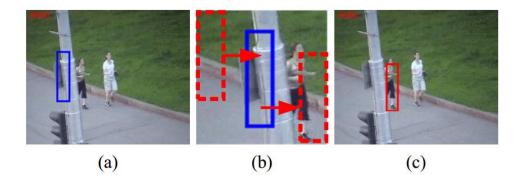

3/8/2019

- lacksim Implementation of verifier ${\cal V}$
 - Siamese networks (similar to SINT (CVPR'16))
 - \succ Formulate verification problem as a matching problem,

$$s = v(x_{obj}, x_{candidate})$$
 (5)

Where *s* represents the verification score. Verification result is decided by

 $\begin{cases} s \ge \tau_1, & passing verification \\ s < \tau_1, & failing verification \end{cases}$ (6)



Detailed layer parameters are shown in the supplementary material.

- How to correct tracker \mathcal{T}
 - Detection
 - \blacktriangleright Verify tracking results every T frames using Eq. (5)
 - When finding unreliable result (i.e., failing verification using Eq. (6)), the verifier returns a feedback with correct object target position obtain via detection
 - > Detection can be formulated as a (batch) verification problem as follows

$$\widehat{c} = \operatorname*{argmax}_{c_i} \nu(x_{obj}, c_i), \quad i = 1, 2, \cdots, N$$
(7)

Where $\{c_i\}_{i=1}^N$ denotes candidate set.

PTAV V.S. other ensemble trackers

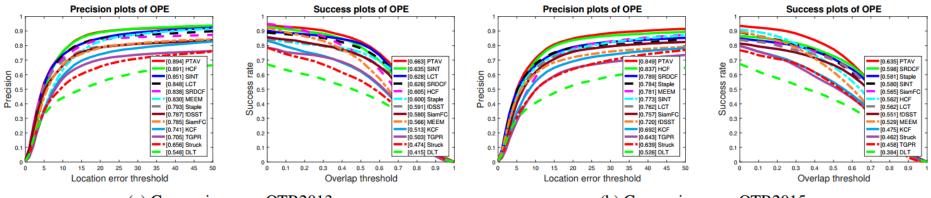
- Ensemble tracking methods
 - Combine different components for tracking
 - TLD (PAMI'12)
 - LCT (CVPR'15)
 - MUSTer (CVPR'15)
 - Could be implemented in multi-threads

Differences with PTAV

- Working principle
 - Other ensemble methods: different components work simultaneously to determine the tracking result
 - **PTAV:** different components work almost **independently** to determine the tracking result
- Multi-thread implementation
 - **Other ensemble methods: synchronous** parallel multi-threads
 - **D** PTAV: **asynchronous** parallel multi-threads

Experimental Setting

- Datasets: OTB2013, OTB2015, TC128, and UAV20L
 - Yi Wu et al, Online Object Tracking: A Benchmark, in CVPR, 2013
 - Yi Wu et al, Object Tracking Benchmark, TPAMI, 2015.
 - Pengpeng Liang et al, Encoding Color Information for Visual Tracking: Algorithms and Benchmark, TIP, 2015.
 - Matthias Mueller et al, A Benchmark and Simulator for UAV Track, in ECCV, 2016.


Metrics

- Distance precision (DP) rate
- Overlap success (OS) rate

Validation scheme

OPE: one-pass evaluation

Overall Results on OTB2013 and OTB2015

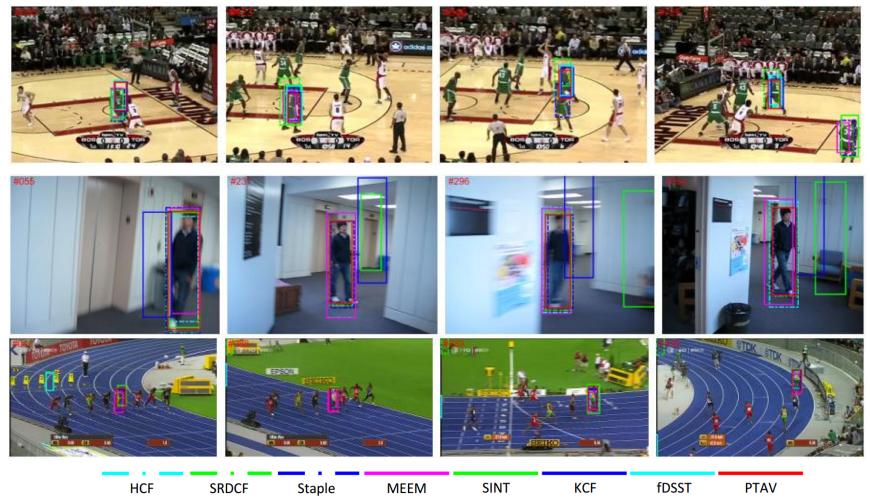
(a) Comparisons on OTB2013

(b) Comparisons on OTB2015

				Deep trackers			Correlation-filters based trackers				Representative trackers			
		PTAV	HCF	SINT	DLT	SiamFC	SRDCF	Staple	LCT	fDSST	KCF	MEEM	TGPR	Struck
		(Ours)	[28]	[37]	[38]	[4]	[8]	[3]	[29]	[7]	[16]	[42]	[11]	[14]
	DPR (%)	89.4	89.1	85.1	54.8	78.5	83.8	79.3	84.8	78.7	74.1	83	70.5	65.6
OTB2013	OSR (%)	82.7	74	79.1	47.8	74.0	78.2	75.4	81.2	74.7	62.2	69.6	62.8	55.9
	Speed (fps)	27	11	3	9	46	4	45	27	54	245	21	1	10
	DPR (%)	84.9	83.7	77.3	52.6	75.7	78.9	78.4	76.2	72	69.2	78.1	64.3	63.9
OTB2015	OSR (%)	77.6	65.6	70.3	43	70.9	72.9	70.9	70.1	67.6	54.8	62.2	53.5	51.6
	Speed (fps)	25	10	2	8	43	4	43	25	51	243	21	1	10

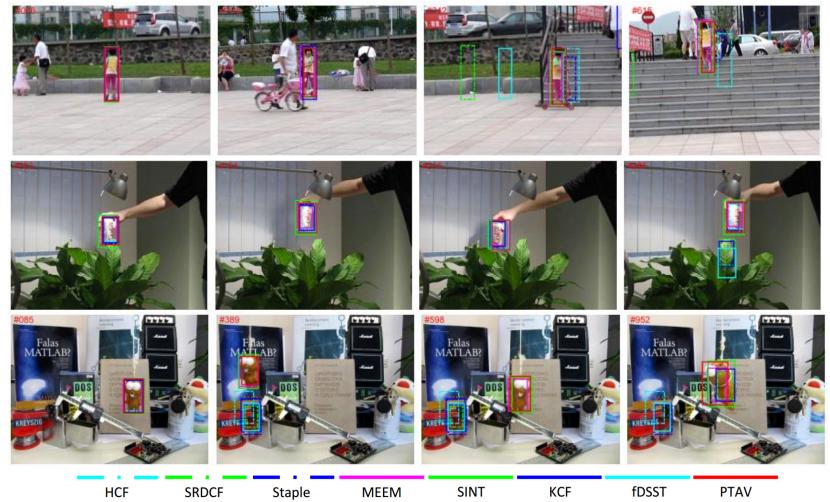

Among all real-time trackers, PTAV achieves the best performance!

3/8/2019 PTAV performs better than deep learning based HCF tracker, in both accuracy and efficiency! 15

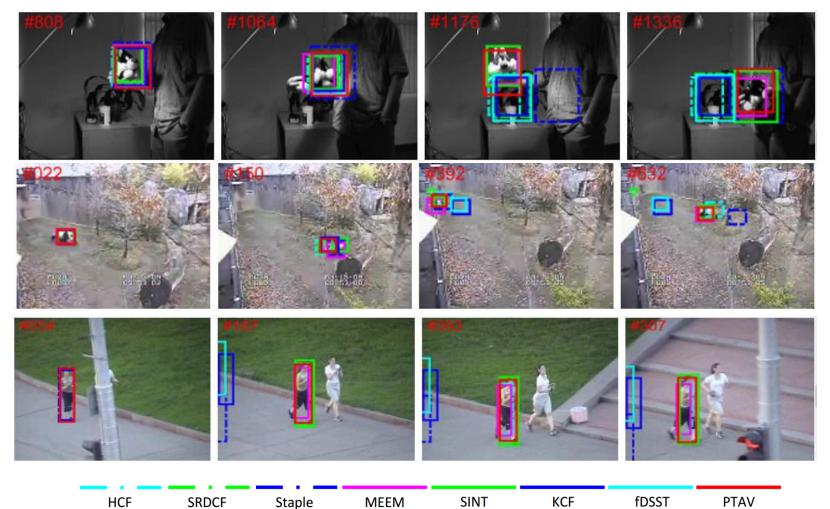

Attribute evaluation on OTB2015

	Distance precision rate (%) on eleven attributes						Overlap success rate (%) on eleven attributes					
Attribute	PTAV	HCF [28]	SRDCF [8]	Staple [3]	MEEM [42	2]SINT [37]	PTAV	HCF [28	SRDCF [8]	Staple [3]	MEEM [42]SINT [37]
BC	87.9	84.7	77.6	77.0	75.1	75.1	64.9	58.7	58.0	57.4	52.1	56.7
DEF	81.3	79.1	73.4	74.8	75.4	75.0	59.7	53.0	54.4	55.4	48.9	55.5
FM	77.7	79.7	76.8	70.3	73.4	72.5	60.8	55.5	59.9	54.1	52.8	55.7
IPR	83.0	85.4	74.5	77.0	79.3	81.1	60.7	55.9	54.4	55.2	52.8	58.5
IV	86.0	81.7	79.2	79.1	74.0	80.9	64.3	54.0	61.3	59.8	51.7	61.8
LR	78.9	78.7	63.1	60.9	60.5	78.8	56.3	42.4	48.0	41.1	35.5	53.9
MB	81.0	79.7	78.2	72.6	72.1	72.8	62.9	57.3	61.0	55.8	54.3	57.4
OCC	83.2	76.7	73.5	72.6	74.1	73.1	62.3	52.5	55.9	54.8	50.3	55.8
OPR	82.8	81.0	74.6	74.2	79.8	79.4	61.1	53.7	55.3	53.8	52.8	58.6
OV	73.6	67.7	59.7	66.1	68.3	72.5	57.0	47.4	46.0	48.1	48.4	55.9
SV	79.7	80.2	74.9	73.1	74.0	74.2	59.0	48.8	56.5	52.9	47.3	55.8
Overall	84.9	83.7	78.9	78.4	78.1	77.3	63.5	56.2	59.8	58.1	52.9	58.0

Overall Results on TC128 and UAV20L



Qualitative Results I



3/8/2019

Qualitative Results II

Qualitative Results III

Detailed analysis of PTAV

• Different verification interval V

	V = 5	V = 10	V = 15
DPR (%)	89.7	89.4	87.9
Speed (fps)	23	27	29

Two threads V.S. one

Threads	OTB2013 [39]	OTB2015 [40]	TC128 [26]	UAV20L [31]
One	16	14	11	15
Two	27	25	21	25

• Different tracker \mathcal{T} : fDSST V.S. KCF

		PTAV with fDSST	PTAV with KCF
	DP (%)	89.4	80.4
OTB2013	OS (%)	82.7	66.3
	Speed (fps)	27	24
OTB2015	DP (%)	84.9	73.5
	OS (%)	77.6	57.9
	Speed (fps)	25	21

Conclusions

 Decompose tracking into two separate tasks (i.e., fast tracking and slow verifying)

The (fast) tracking and (slow) verifying work asynchronously

- PTAV enjoys both high efficiency provided by \mathcal{T} and the strong discriminative power provided by \mathcal{V}
- PTAV is a very flexible framework with great rooms for improvement and generalization.

Project & code: http://www.dabi.temple.edu/~hbling/code/PTAV/ptav.htm

Thank you!